古之立大事者,不惟有超世之才,亦必有坚忍不拔之志。

数据挖掘之特征工程

大数据与AI admin 166℃ 0评论

转自《特征工程以及特征工程的方法》

什么是特征工程

有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。通过总结和归纳,人们认为特征工程包括以下方面:

特征工程的常用处理方法

1.时间戳处理

时间戳属性通常需要分离成多个维度比如年、月、日、小时、分钟、秒钟。但是在很多的应用中,大量的信息是不需要的。比如在一个监督系统中,尝试利用一个’位置+时间‘的函数预测一个城市的交通故障程度,这个实例中,大部分会受到误导只通过不同的秒数去学习趋势,其实是不合理的。并且维度’年’也不能很好的给模型增加值的变化,我们可能仅仅需要小时、日、月等维度。因此当我们在呈现时间的时候,试着保证你所提供的所有数据是你的模型所需要的。假如数据源来自不同的地理数据源,可以利用时区将数据标准化。

2.数据类别属性编码化

一些数值可能不是数值型,这时候就需要用到编码化,比如,风向,的数据是东西南北,这时候,可以做成形如以下的编码,将风向编码化,如下图哪个风向就将哪个风向置换1.
处理前

出来后

3.分箱/分区

有时候,将数值型属性转换成类别呈现更有意义,同时能使算法减少噪声的干扰,通过将一定范围内的数值划分成确定的块。举个例子,我们预测一个人是否拥有某款衣服,这里年龄是一个确切的因子。其实年龄组是更为相关的因子,所有我们可以将年龄分布划分成1-10,11-18,19-25,26-40等。而且,不是将这些类别分解成2个点,你可以使用标量值,因为相近的年龄组表现出相似的属性。
只有在了解属性的领域知识的基础,确定属性能够划分成简洁的范围时分区才有意义。即所有的数值落入一个分区时能够呈现出共同的特征。在实际应用中,当你不想让你的模型总是尝试区分值之间是否太近时,分区能够避免出现过拟合。例如,如果你所感兴趣的是将一个城市作为整体,这时你可以将所有落入该城市的维度值进行整合成一个整体。分箱也能减小小错误的影响,通过将一个给定值划入到最近的块中。如果划分范围的数量和所有可能值相近,或对你来说准确率很重要的话,此时分箱就不适合了。

4. 交叉特征

交叉特征算是特征工程中非常重要的方法之一了,交叉特征是一种很独特的方式,它将两个或更多的类别属性组合成一个。当组合的特征要比单个特征更好时,这是一项非常有用的技术。数学上来说,是对类别特征的所有可能值进行交叉相乘。
假如拥有一个特征A,A有两个可能值{A1,A2}。拥有一个特征B,存在{B1,B2}等可能值。然后,A&B之间的交叉特征如下:{(A1,B1),(A1,B2),(A2,B1),(A2,B2)},并且你可以给这些组合特征取任何名字但是需要明白每个组合特征其实代表着A和B各自信息协同作用。

5. 特征选择

为了得到更好的模型,使用某些算法自动的选出原始特征的子集。这个过程,你不会构建或修改你拥有的特征,但是会通过修剪特征来达到减少噪声和冗余。
那些和我们解决的问题无关需要被移除的属性,在我们的数据特征中存在了一些特征对于提高模型的准确率比其他更重要的特征,也还有一些特征与其他特征放在一起出现了冗余,特征选择是通过自动选出对于解决问题最有用的特征子集来解决上述问题的。
特征选择算法可能会用到评分方法来排名和选择特征,比如相关性或其他确定特征重要性的方法,更进一步的方法可能需要通过试错,来搜索出特征子集。
还有通过构建辅助模型的方法,逐步回归就是模型构造过程中自动执行特征选择算法的一个实例,还有像Lasso回归和岭回归等正则化方法也被归入到特征选择,通过加入额外的约束或者惩罚项加到已有模型(损失函数)上,以防止过拟合并提高泛化能力。

6. 特征缩放

有时候,你可能会注意到某些特征比其他特征拥有高得多的跨度值。举个例子,将一个人的收入和他的年龄进行比较,更具体的例子,如某些模型(像岭回归)要求你必须将特征值缩放到相同的范围值内。通过缩放可以避免某些特征比其他特征获得大小非常悬殊的权重值。

7.特征提取

特征提取涉及到从原始属性中自动生成一些新的特征集的一系列算法,降维算法就属于这一类。特征提取是一个自动将观测值降维到一个足够建模的小数据集的过程。对于列表数据,可使用的方法包括一些投影方法,像主成分分析和无监督聚类算法。对于图形数据,可能包括一些直线检测和边缘检测,对于不同领域有各自的方法。
特征提取的关键点在于这些方法是自动的(虽然可能需要从简单方法中设计和构建得到),还能够解决不受控制的高维数据的问题。大部分的情况下,是将这些不同类型数据(如图,语言,视频等)存成数字格式来进行模拟观察。

特征工程流程

数据预处理常用方法:

1.标准化

标准化的前提是特征值服从正态分布,标准化后,其转换成标准正态分布。常用的方法有:z-score标准化,即零-均值标准化,y=(x-μ)/σ。经过处理后的数据均值为0,标准差为1。

2.归一化

常用的方法有: min-max归一化y=(x-min)/(max-min)

3. 对定量特征二值化(离散化)

定量特征二值化的核心在于设定一个阈值,大于阈值的赋值为1,小于等于阈值的赋值为0

4.对定性特征进行独热编码

独热编码:使用一个二进制的位来表示某个定性特征的出现与否

5. 缺失值的处理

现实世界中的数据往往非常杂乱,未经处理的原始数据中某些属性数据缺失是经常出现的情况。另外,在做特征工程时经常会有些样本的某些特征无法求出。下面是几种处理数据中缺失值的主要方法。

  • 删除
    最简单的方法是删除,删除属性或者删除样本。如果大部分样本该属性都缺失,这个属性能提供的信息有限,可以选择放弃使用该维属性;如果一个样本大部分属性缺失,可以选择放弃该样本。虽然这种方法简单,但只适用于数据集中缺失较少的情况。
    *统计填充
    对于缺失值的属性,尤其是数值类型的属性,根据所有样本关于这维属性的统计值对其进行填充,如使用平均数、中位数、众数、最大值、最小值等,具体选择哪种统计值需要具体问题具体分析。另外,如果有可用类别信息,还可以进行类内统计,比如身高,男性和女性的统计填充应该是不同的。
  • 统一填充
    对于含缺失值的属性,把所有缺失值统一填充为自定义值,如何选择自定义值也需要具体问题具体分析。当然,如果有可用类别信息,也可以为不同类别分别进行统一填充。常用的统一填充值有:“空”、“0”、“正无穷”、“负无穷”等。
  • 预测填充
    我们可以通过预测模型利用不存在缺失值的属性来预测缺失值,也就是先用预测模型把数据填充后再做进一步的工作,如统计、学习等。虽然这种方法比较复杂,但是最后得到的结果比较好。

特征选择

当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。通常来说,从两个方面考虑来选择特征:

  • 特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。
    特征与目标的相关性:这点比较显见,与目标相关性高的特征,应当优选选择。除方差法外,本文介绍的其他方法均从相关性考虑。
    根据特征选择的形式又可以将特征选择方法分为3种:
  • Filter:过滤法,按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的个数,选择特征。
  • Wrapper:包装法,根据目标函数(通常是预测效果评分),每次选择若干特征,或者排除若干特征。
  • Embedded:嵌入法,先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣。
  • 使用方差选择法,先要计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征。
  • 使用相关系数法,先要计算各个特征对目标值的相关系数以及相关系数的P值。 皮尔森相关系数是一种最简单的,能帮助理解特征和响应变量之间关系的方法,该方法衡量的是变量之间的线性相关性,结果的取值区间为[-1,1],-1表示完全的负相关(这个变量下降,那个就会上升),+1表示完全的正相关,0表示没有线性相关。
  • 距离相关系数是为了克服Pearson相关系数的弱点而生的。Pearson相关系数是0,我们也不能断定这两个变量是独立的(有可能是非线性相关);但如果距离相关系数是0,那么我们就可以说这两个变量是独立的。
  • 降维度 当特征选择完成后,可以直接训练模型了,但是可能由于特征矩阵过大,导致计算量大,训练时间长的问题,因此降低特征矩阵维度也是必不可少的。常见的降维方法除了以上提到的基于L1惩罚项的模型以外,另外还有主成分分析法(PCA)和线性判别分析(LDA),线性判别分析本身也是一个分类模型。PCA和LDA有很多的相似点,其本质是要将原始的样本映射到维度更低的样本空间中,但是PCA和LDA的映射目标不一样:PCA是为了让映射后的样本具有最大的发散性;而LDA是为了让映射后的样本有最好的分类性能。所以说PCA是一种无监督的降维方法,而LDA是一种有监督的降维方法。

转载请注明:北凉柿子 » 数据挖掘之特征工程

喜欢 (0)or分享 (0)
发表我的评论
取消评论
表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址